Биология - Гемодинамика - Микроциркуляция

09 февраля 2011


Оглавление:
1. Гемодинамика
2. Функциональная классификация сосудов
3. Основные параметры сердечно-сосудистой системы
4. Движение крови по артериям
5. Микроциркуляция
6. Движение крови по венам
7. Особенности кровотока в органах



Микроциркуляторное русло

В микроциркуляторном русле осуществляется транспорт веществ через стенку капилляров, в результате чего клетки органов и тканей обмениваются с кровью теплом, водой и другими веществами, образуется лимфа.

Транскапиллярный обмен веществ

Происходит путем диффузии, облегченной диффузии, фильтрации, осмоса и трансцитоза. Интенсивность всех этих процессов, разных по физико-химической природе, зависит от объема кровотока в системе микроциркуляции, а также определяется проницаемостью обменной поверхности.

Обменная поверхность капилляров гетерогенна по своему строению: она состоит из чередующихся белковой, липидной и водной фаз. Липидная фаза представлена почти всей поверхностью эндотелиальной клетки, белковая — переносчиками и ионными каналами, водная — межэндотелиальными порами и каналами, имеющими разный диаметр, а также фенестрами эндотелиоцитов. Эффективный радиус водных пор и каналов определяет размер водорастворимых молекул, которые могут проходить через них свободно, ограничено или вообще не проходить, т.е. проницаемость капилляров для разных веществ неодинакова.

Свободно диффундирующие вещества быстро переходят в ткани, и диффузионное равновесие между кровью и тканевой жидкостью достигается уже в начальной половине капилляра. Для ограниченно диффундирующих веществ требуется большее время установления диффузионного равновесия, и оно либо достигается на венозном конце капилляра, или не устанавливается вообще. Поэтому для веществ, транспортируемых только диффузией, имеет большое значение линейная скорость капиллярного кровотока. Если скорость транскапиллярного транспорта веществ меньше, чем скорость кровотока, то вещество может выноситься с кровью из капилляра, не успев вступить в диффузионное равновесие с жидкостью межклеточных пространств. При определенной величине скорости кровоток может лимитировать количество перешедшего в ткани или, наоборот, выводимого из тканей вещества. Поток свободно диффундирующих веществ в основном зависит от площади поверхности обмена, т.е. от количества функционирующих капилляров, поэтому транспорт свободно диффундирующих веществ может ограничиваться при снижении объемной скорости кровотока.

Та часть объема кровотока, из которой в процессе транскапиллярного перехода извлекаются вещества, называется нутритивным кровотоком, остальной объем — шунтовым кровотоком.

Для характеристики гидравлической проводимости капилляров используют коэффициент капиллярной фильтрации. Его выражают количеством миллилитров жидкости, которое фильтруется в течение 1 мин в 100 г ткани в расчете на 1 мм рт.ст. фильтрационного давления.

Обмен жидкости через стенку капилляра. Стрелками обозначены направления движения жидкости и изменения величины движущей силы по ходу капилляра. ФД — фильтрационное давление, РД — реабсорбционное давление

Фильтрационное давление обеспечивает фильтрацию жидкости в артериальном конце капилляра, в результате чего она перемещается из капилляров в интерстициальное пространство. ФД является результатом взаимодействия разнонаправленных сил: способствуют фильтрации гидростатическое давление крови и онкотическое давление тканевой жидкости. Препятствует фильтрации онкотическое давление плазмы крови. Гидростатическое давление в интерстиции колеблется около нуля, поэтому ФД равно:

ФД = ГДк + ОДт - ОДк = 30 + 5 - 25 = 10

По мере продвижения крови по капилляру ГДк снижается до 15 мм рт.ст., поэтому силы, способствующие фильтрации, становятся меньше сил, противодействующих фильтрации. Таким образом, формируется реабсорбционное давление, обеспечивающее перемещение жидкости в венозном конце из интерстиция в капилляры.

РД = ОДк - ГДк - ОДт = 25 - 15 - 5 = 5

Соотношение и направления сил, обеспечивающих фильтрацию и реабсорбцию жидкости в капиллярах, показаны на рисунке слева.

Таким образом, фильтрационное давление больше, чем реабсорбционное, но поскольку проницаемость для воды венозной части микроциркуляторного русла выше проницаемости артериального конца капилляра, то количество фильтрата лишь незначительно превышает количество реабсорбируемой жидкости; излишек воды из тканей удаляется через лимфатическую систему.

Согласно классической теории Старлинга, между объемом жидкости, фильтрующейся в артериальном конце капилляра, и объемом жидкости, реабсорбируемой в венозном конце, в норме существует динамическое равновесие. Если оно нарушается, происходит перераспределение воды между сосудистым и межклеточным секторами. В случае накопления воды в интерстиции возникает отек и жидкость начинает интенсивнее дренироваться терминальными лимфатическими сосудами. Регуляция всех механизмов массопереноса через стенку капилляров осуществляется путем изменений количества функционирующих капилляров и их проницаемости. В покое во многих тканях функционирует лишь 25—30 % капилляров от их общего количества, при деятельном состоянии их число возрастает, например, в скелетных мышцах до 50—60 %. Проницаемость сосудистой стенки увеличивается под влиянием гистамина, серотонина, брадикинина, по-видимому, вследствие трансформации малых пор в большие. В случае, когда промежутки между эндотелиальными клетками заполнены компонентами соединительной ткани, действие гуморальных факторов может проявляться в сдвигах стерического ограничения межклеточного матрикса для перемещения молекул. С таким влиянием связывают увеличение проницаемости под влиянием гиалуронидазы и снижение — при действии ионов кальция, витаминов Р, С, катехоламинов.

Скорость кровотока

в отдельных капиллярах определяют с помощью биомикроскопии, дополненной кинотелевизионным и другими методами. Среднее время прохождения эритроцита через капилляр большого круга кровообращения составляет у человека 2,5 с, в малом круге — 0,3—1 с.



Просмотров: 42448


<<< Внутричерепное давление