Биология - Пили - Половые пили

09 февраля 2011


Оглавление:
1. Пили
2. Пили типа 2
3. Половые пили



Половые пили Е. соli образуются у клеток донорских штаммов, отличающихся от изогенных реципиентных наличием у клеток особого генетического детерминанта — полового фактора, или фактора трансмиссивности, который либо является автономным репликоном, либо входит в состав автономного репликона, либо интегрирован с бактериальной хромосомой. Фактор трансмиссивности находится в составе плазмид — факторов множественной устойчивости к антибиотикам, факторов колициногенности и ряда других плазмид. Половые пили отличаются от пилей общего типа по строению и антигенной специфичности, пили, кодируемые различными генетическими детерминантами, также различны.

Половые F-пили, определяемые F-факторами, представляют собой белковые цилиндры, перпендикулярные поверхности клетки, толщиной 8,5—9,5 нм и длиной до 1,1 мкм. Они легко могут быть отделены от клетки при встряхивании бактериальной массы. F—пили образованы белком с молекулярной массой 11,8 кДа. В составе F—пилина отсутствуют пролин, цистеин, гистидин, аргинин. К молекуле пилина присоединены две фосфатные группы и остаток D-глюкозы, связанные с белком ковалентными связями. Пилин содержит довольно много кислых и гидрофобных аминокислот. Он синтезируется на рибосомах, связанных с цитоплазматической мембраной и в цитоплазме не обнаруживается. Пул пилина, видимо, накапливается в цитоплазматической мембране. Его молекулы в процессе синтеза содержат дополнительную сигнальную последовательность аминокислот, отщепляющуюся при транспорте через мембрану. F—пили легко диссоциируют в растворах додецилсульфата натрия и разрушаются органическими растворителями, что связано с гидрофобностью пилина. Бактерии, имеющие F—пили, приобретают новый антиген, у них изменяется поверхностный заряд. Бактерии с F-пилями малоподвижны, проявляют тенденцию к автоагглютинации, например, при понижении значения рН среды. Это также происходит за счет богатства пилина кислыми и гидрофобными аминокислотами. F—фактор интересен еще и потому, что иногда он встраивается в молекулу основной ДНК клетки-хозяина. Тогда при конъюгации переносится не только F—фактор, но, также и остальная ДНК. Этот процесс занимает примерно 90 минут, но клетки могут расходиться и раньше, до полного обмена ДНК. Такие штаммы постоянно передают всю или большую часть своей ДНК другим клеткам. Эти штаммы называются Hrf-штаммами, потому что донорная ДНК таких штаммов рекомбинирует с ДНК реципиента.

Для образования F-пилей необходима активность, по крайней мере, 13 генов. Сборка трубочек пилей происходит на цитоплазматической мембране в местах ее контакта с внешней мембраной. Трубочка пили проходит через слои муреина и внешнюю мембрану. Для сборки и сохранения пилей необходима энергия. Образованию пилей препятствуют цианид, динитрофенол, азид натрия. Возможно, в процессе сборки происходит фосфорилирование пилина. Обычно клетки с дерепрессированным F—фактором образуют 1—2 пили, а в анаэробных условиях и на богатой среде — до 5 пилей. Причина стимуляции пилеобразования в анаэробных условиях неизвестна. У клеток с оторванными пилями быстро отрастают новые, за 30 секунд пиля достигает 1/2 нормальной длины, а полностью формируется за 4—5 мин. Сформированные пили сохраняются на поверхности клетки 4—5 мин, а затем сбрасываются. Это свидетельствует в пользу точки зрения о том, пили — активные образования. Пили, определяемые фактором Соl I, образованы иным пилином, на них не адсорбируются фаги, специфичные для F—пилей, но имеются специфичные для них фаги. Так называемые мужские фаги адсорбируются на половых пилях, РНК-содержащие фаги — на их боковых поверхностях и нитчатые фаги, содержащие одноцепочечную ДНК, — на кончиках этих пилей. Нитчатый фаг препятствует конъюгации.

При конъюгации к реципиентной клетке присоединяется конец половой пили, при этом рецептором служит белок внешней мембраны реципиентной клетки. Сначала этот контакт не очень прочный и легко может быть нарушен при гидродинамических воздействиях. При этом пары распадаются при множественном заражении РНК-содержащими фагами или в присутствии ионов Zn. Через несколько минут контакт становится более прочным, происходит сближение клеток и образование между ними цитоплазматического мостика. Имеются данные, свидетельствующие о том, что передача ДНК может происходить и без образования цитоплазматического мостика, а непосредственно через отверстие в пиле. Инактивация пилей антисывороткой и любые повреждающие их воздействия приводят к нарушению процесса конъюгации, в то время как нарушение целостности внешней мембраны или муреинового слоя до некоторого предела влияют на донорские свойства клетки, имеющей пили. После установления контакта с реципиентной клеткой черв пилю в донорскую клетку передается сигнал, вызывающий начало конъюгационного синтеза ДНК. Механизм работы половых пилей еще окончательно не установлен. Ряд наблюдений свидетельствует в пользу модели, предполагающей активную функцию пилей. Согласно этой точке зрения после установления контакта с клеткой реципиента или с вирусом пиля сокращается или втягивается в клетку. Эта модель подтверждается как косвенными, так и прямыми наблюдениями. На электронно-микроскопических препаратах можно проследить, как после адсорбции нитчатого мужского фага на их кончиках пили укорачиваются, а затем нити фага оказываются на поверхности клетки. Сокращение пилей вызыват KCN или арсенат. После воздействия этими ингибиторами пили не обнаруживаются ни на поверхности клеток, ни в окружающей среде, но можно наблюдать адсорбцию на поверхности клеток мужских фагов и антител, специфичных к концам пилей, то есть их кончики, видимо, продолжают выступать над поверхностью клетки. При фаговой инфекции в дальнейшем происходит растворение белковой оболочки нитчатого фага в цитоплазматической мембране бактерии и освобождение его ДНК в цитоплазму. При инфицировании РНК-содержащими мужскими фагами сначала образуется комплекс фаговой РНК с пилином, а фаговый капсид освобождается в среду.

Обычно синтез пилина находится под контролем цитоплазматических репрессоров. В некоторых случаях удается наблюдать определенные закономерности в регуляции образования пилей. Так, в случае Соl I—фактора каждая клетка, получившая при конъюгации плазмиду Соl I, образует пили, их активное образование происходит у клеток 4—8 последующих генераций. Однако затем только единичные клетки в популяции образуют пили, поскольку у большинства бактерий синтез пилина репрессирован. Подобная репрессия, как считают, имеет приспособительное значение, поскольку клетки без пилей не чувствительны к мужским бактериофагам, которые могли бы уничтожить всю популяцию. Единичные клетки с пилями способны обеспечить конъюгацию. При контакте таких клеток с популяциями реципиентных бактерий начинается лавинообразное распространение плазмиды, поскольку образование пилей сначала не репрессировано.

Половые пили обычно образуют только активно растущие клетки, клетки из культуры, находящейся в стационарной фазе роста, обычно лишены пилей и являются плохими донорами.

Как уже было отмечено, существует много более или менее различающихся плазмид, способных определять образование половых пилей, которые также несколько различаются. Рецепторы на поверхности реципиентных клеток обладают разной степенью сродства к разным пилям, что может сильно влиять на эффективность конъюгации бактерий.

Пили, подобные пилям E. coli, образуют и другие представители Enterobacteriaceae. Половые пили имеют Vibrio, Pasteurella, Aeromonas, Pseudomonas.



Просмотров: 10774


<<< Периплазматическое пространство
Плазмиды >>>