Биология - Феноптоз - «Отрицание отрицания» постулата А. Вейсмана. Эксперименты А. Карреля и Л. Хейфлика, П. Мурхеда

09 февраля 2011


Оглавление:
1. Феноптоз
2. Дискуссия об индивидуальном авторстве гипотезы запрограммированной смерти
3. «Отрицание отрицания» постулата А. Вейсмана. Эксперименты А. Карреля и Л. Хейфлика, П. Мурхеда
4. Критика, известные оппоненты и сторонники гипотезы феноптоза Августа Вейсмана
5. Попытки модернизации гипотезы феноптоза Августа Вейсмана. Подход В. П. Скулачёва и подход А. Г. Бойко
6. Интересные факты



Опыты Алексиса Карреля по выращиванию изолированных из организма клеток в культуре ткани, как будто опровергали предположение А. Вейсмана о «смертности» соматических клеток. А.Каррель выделял из куриного сердца кусочек миокарда, помещал его в питательную среду и инкубировал в термостате. Через нескольких дней по периферии кусочка миокарда появлялся слой делящихся фибробластов. Тканевый кусочек разделялся на две равные части, которые пересаживались в новые стеклянные сосуды, и инкубация продолжалась. Пересевы можно было продолжать длительное время, и на протяжении всех этих пассажей фибробласты продолжали делиться.

До 1961 года считалось, что постулат А. Вейсмана опровергнут. Но, Леонард Хейфлик и П. Мурхед провели эксперименты по культивации фибробластов человеческих эмбрионов. Эти исследователи помещали в питательную среду отдельные клетки, а не цельный кусочек ткани, как это делал А.Каррель. В культуре начиналось деление фибробластов, и когда клеточный слой достигал определённого размера, его делили пополам, диссоциировали клетки и переносили в новый сосуд. Подобные пассажи продолжались до тех пор, пока деление клеток не прекращалось, что происходило в среднем через 50 делений. Клеточное деление прекращалось, а клетки спустя определённое время погибали. Эти опыты были многократно подтверждены другими исследователями. Сам факт неоднократного подтверждения этого феномена инициировал очередную переоценку теоретического наследия А. Вейсмана. Критическое число делений соматических клеток получило название «лимита Хейфлика», который для соматических клеток различных видов позвоночных животных оказался различным и коррелировал с продолжительностью их жизни.

Теломерная гипотеза старения А. М. Оловникова

Оловников А. М. в 1971 году выдвинул гипотезу маргинотомии для объяснения феномена лимита Хейфлика. Согласно этой гипотезы лимит Хейфлика объясняется тем, что у эукариот при каждом клеточном делении хромосомы немного укорачиваются. У хромосом имеются особые концевые участки — теломеры, которые после каждого удвоения хромосом становятся немного короче, и в какой-то момент укорачиваются настолько, что клетка уже не может делиться и со временем постепенно теряет жизнеспособность.

А. М. Оловников предполагал, что «нестарение» бактерий обусловлено кольцевой формой ДНК, а теломерные последовательности в стволовых и раковых клетках защищены благодаря постоянному их удлинению при каждом делении клетки ферментом теломеразой.

Значительная часть теоретических разработок А. М. Оловникова посвящены феноменам старения и онтогенеза. Он пытался объяснить в свете своей гипотезы феномены старения, канцерогенеза и иммунных реакций.

В 1998 году вывод о теломерном механизме ограничения числа делений клетки был экспериментально подтверждён. Лимит Хейфлика преодолён активацией теломеразы.

Стремительный прогресс познания в областях клеточной и молекулярной биологии опять, как будто расставил все точки над «i». В 90 годах ХХ века и первом десятилетии ХХI веков стало ясно, что организм любого вида Metazoa состоит из двух клеточных пулов: стволовых клеток, которые не имеют внутренней причины старения и остальных специализированных клеток сомы с ограниченным регенерационным потенциалом и подверженных клеточному старению как от действия теломерно-теломеразного механизма, так и от стохастических причин. Такие постаревшие и переставшие делиться клетки элиминируются из организма апоптозом. Пул стволовых клеток пополняется путем симметричного митоза стволовых клеток, а пул соматических клеток пополняется ассиметричным митозом тех же стволовых клеток. Стало ясно и то, что многоклеточному организму необходимо избавляться от поврежденных клеток, способных в случае их выживания давать клон клеток с нарушенными свойствами и функциями, что может грозить непредсказуемыми последствиями. Поэтому, уничтожение апоптозом клеток, достигших лимита Хейфлика только частный случай сохранения морфологического и функционального гомеостаза организма. Другими словами, генетический контроль продолжительности жизни клетки, основанный на контроле за числом её митозов — это только один из механизмов, позволяющих исключить из клеточной популяции долгоживущие клетки, которые за время своего существования возможно, сумели в результате суммации молекулярных и метаболических ошибок приобрести признаки вредные для существования организма.

В рассматриваемый период период наука признала существование потенциально бессмертных и демонстрирующих пренебрежимое старение. То есть, старение — не обязательный атрибут существования многоклеточных организмов, ибо многие виды прекрасно обходятся без него . Общеизвестно, что стареющие и нестареющие формы имеют одни и те клеточные механизмы, в том числе теломерно-теломеразный механизм старения клеток и апоптоз. В данном случае уместна цитата из Л.Хейфлика: «…я не верю в то, что старение и смерть людей наступает вследствие прекращения деления их клеток».

Таким образом, стало понятно, что постулат А. Вейсмана: — старение организма определяется тем, что у соматических клеток «…способность к росту путем деления не вечна, а ограничена» справедлив только для пула соматических специализированных клеток. Но, играет ли хоть какую-то роль в старении целостного организма генетический контроль числа митозов соматических специализированных клеток — вопрос открытый и риторический.

8 июля 2007 года в гостинице «Прибалтийская» Санкт-Петербурга, где в то время проходил VI Европейский Конгресс международной ассоциации геронтологии и гериатрии, А. М. Оловников публично отказался от теломерной теории старения:

«Да, все мои предсказания экспериментально подтвердились. Первое — что концы ДНК — буферная зона, и после каждого деления они укорачиваются. Второе предсказание — природа должна была изобрести компенсаторный механизм в виде особой ДНК-полимеразы, чтобы сохранять концы хромосом в половых клетках, иначе — конец живому. Этот механизм должен так же работать в бессмертных раковых клетках. Позже выяснилось, что этот компенсаторный механизм есть и в стволовых клетках. Эта компенсаторная ДНК-полимераза получила в литературе наименование теломеразы. Еще одно предсказание — в бактериях кольцевая ДНК придумана природой для того, чтобы не было концевой недорепликации. И наконец, я предсказал, что должна быть корреляция между размерами хромосомных концов или теломер и числом проделанных клетками делений. И считал, что это и есть причина старения.

Все предсказания подтвердились в экспериментах. В том числе и корреляция между степенью укорочения теломер и числом клеточных удвоений. Но некоторые исследования показали, что клетки даже старого человека сохраняют способность к удвоению. Брали клетки двадцатилетнего и девяностолетнего, и оказывалось, что разброс в их способности к делению не так уж и велик. Клетки просто не успевают исчерпать свой лимит удвоений до того, как организм постареет и даже отойдет в мир иной. Оказалось, кроме того, что лабораторные мыши с довольно длинными теломерами и дикие с короткими теломерами живут одинаковый срок. И я понял, что не укорочение теломер является движущей силой старения».

Из интевью А. М. Оловникова. Барсова Р. Теории старения // Мой компас http://moikompas.ru/compas/theories_of_aging



Просмотров: 9848


<<< Тропизмы