Биология - Браун, Майкл Стюарт

08 февраля 2011

Майкл Стюарт Браун — известный американский врач и биохимик. За исследования наследственной гиперхолестеринемии и открытие рецептора липопротеинов низкой плотности вместе с Джозефом Голдштейном получил Нобелевскую премию по медицине и физиологии в 1985 году.


Майкл Браун закончил Университет Пенсильвании в 1962 и медицинскую школу этого же университета в 1966. С тех пор работает в Юго-Западном медицинском центре в области метаболизма холестерина. Автор множества статей в ведущих мировых биологических и медицинских журналах. В 1985 году получил Нобелевскую премию за открытие рецептора липопротеинов низкой плотности.


Основные научные публикации:

Expression of the familial hypercholesterolemia gene in heterozygotes: mechanism for a dominant disorder in man. Science. 1974 Jul 5;185:61-3.

Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. 1975 Nov;6:307-16.

Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7:85-95.

Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16;191:150-4.

Heterozygous familial hypercholesterolemia: failure of normal allele to compensate for mutant allele at a regulated genetic locus. Cell. 1976 Oct;9:195-203.

Analysis of a mutant strain of human fibroblasts with a defect in the internalization of receptor-bound low density lipoprotein. Cell. 1976 Dec;9:663-74.

Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10:351-64.

Genetics of the LDL receptor: evidence that the mutations affecting binding and internalization are allelic. Cell. 1977 Nov;12:629-41.

A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature. 1977 Dec 22-29;270:695-9.

Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell. 1978 Nov;15:919-33.

Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279:679-85

LDL receptors in coated vesicles isolated from bovine adrenal cortex: binding sites unmasked by detergent treatment. Cell. 1980 Jul;20:829-37.

Regulation of plasma cholesterol by lipoprotein receptors. Science. 1981 May 8;212:628-35.

Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981 May;24:493-502.

Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell. 1982 Oct;30:715-24

Independent pathways for secretion of cholesterol and apolipoprotein E by macrophages. Science. 1983 Feb 18;219:871-3.

Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32:663-7

The LDL receptor locus in familial hypercholesterolemia: multiple mutations disrupt transport and processing of a membrane receptor. Cell. 1983 Mar;32:941-51.

Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell. 1983 May;33:273-85

Increase in membrane cholesterol: a possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells. Cell. 1984 Apr;36:835-45.

Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Nature. 1984 Apr 12-18;308:613-7.

Domain map of the LDL receptor: sequence homology with the epidermal growth factor precursor. Cell. 1984 Jun;37:577-85.

HMG CoA reductase: a negatively regulated gene with unusual promoter and 5' untranslated regions. Cell. 1984 Aug;38:275-85.

The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984 Nov;39:27-38

Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985 Jan 11;227:140-6.

The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17;228:815-22.

Cassette of eight exons shared by genes for LDL receptor and EGF precursor. Science. 1985 May 17;228:893-895

Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell. 1985 May;41:249-58.

Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell. 1985 Jul;41:735-43.

5' end of HMG CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription. Cell. 1985 Aug;42:203-12.

Scavenger cell receptor shared. Nature. 1985 Aug 22-28;316:680-1.

A receptor-mediated pathway for cholesterol homeostasis. Science. 1986 Apr 4;232:34-47.

The J.D. mutation in familial hypercholesterolemia: amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors Cell. 1986 Apr 11;45:15-24.

Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 1986 Jun 6;232:1230-7.

Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell. 1987 Mar 13;48:827-35.

42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter. Cell. 1987 Mar 27;48:1061-9.

Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature. 1987 Apr 23-29;326:760-765

Overexpression of low density lipoprotein receptor eliminates LDL from plasma in transgenic mice. Science. 1988 Mar 11;239:1277-81.

Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell. 1990 Jul 13;62:81-8.

Diet-induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. Science. 1990 Nov 30;250:1273-5

Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell. 1991 May 3;65:429-34.

cDNA cloning and expression of the peptide-binding beta subunit of rat p21ras farnesyltransferase, the counterpart of yeast DPR1/RAM1. Cell. 1991 Jul 26;66:327-34.

Purification of component A of Rab geranylgeranyl transferase: possible identity with the choroideremia gene product. Cell. 1992 Sep 18;70:1049-57.

Koch’s postulates for cholesterol. Cell. 1992 Oct 16;71:187-8.

cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell. 1993 Jun 18;73:1091-9

SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993 Oct 8;75:187-97.

Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell. 1994 Mar 11;76:865-73.

SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994 Apr 8;77:53-62

Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell. 1996 Jun 28;85:1037-46

Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell. 1996 Nov 1;87:415-26.

The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997 May 2;89:331-40.

Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell. 1999 Dec 23;99:703-12.

Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000 Feb 18;100:391-8.

Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell. 2000 Aug 4;102:315-23.

Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002 Aug 23;110:489-500.

Просмотров: 7132

<<< Борде, Жюль
Бреннер, Сидней >>>